Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
1.
Cell Prolif ; : e13647, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38605678

RESUMO

Major zygotic genome activation (ZGA) occurs at the late 2-cell stage and involves the activation of thousands of genes, supporting early embryonic development. The reasons underlying the regulation of ZGA are not clear. Acetylation modifications of histone tails promote transcriptional activation, and the maternal deletion of H4K16ac leads to failure in ZGA. GATAD2B is one of the core subunits of the nucleosome remodelling and histone deacetylation (NuRD) complex. Our research has shown that GATAD2B exhibits specific nucleus localization and high protein expression from the late 2-cell stage to the 8-cell stage. This intriguing phenomenon prompted us to investigate the relationship between GATAD2B and the ZGA. We discovered a distinctive pattern of GATAD2B, starting from the late 2-cell stage with nuclear localization. GATAD2B depletion resulted in defective embryonic development, including increased DNA damage at morula, decreased blastocyst formation rate, and abnormal differentiation of ICM/TE lineages. Consistent with the delay during the cleavage stage, the transcriptome analysis of the 2-cell embryo revealed inhibition of the cell cycle G2/M phase transition pathway. Furthermore, the GATAD2B proteomic data provided clear evidence of a certain association between GATAD2B and molecules involved in the cell cycle pathway. As hypothesized, GATAD2B-deficient 2-cell embryos exhibited abnormalities in ZGA during the maternal-to-embryonic transition, with lower expression of the major ZGA marker MERVL. Overall, our results demonstrate that GATAD2B is essential for early embryonic development, in part through facilitating ZGA.

2.
Polymers (Basel) ; 16(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38475350

RESUMO

The sluggish commercial application of proton exchange membrane fuel cells (PEMFCs) with low Pt loading is chiefly hindered by concentration polarization loss, particularly at high current density regions. Addressing this, our study concentrates on the ionomer membranes in the cathode catalyst layer (CCL) and explores the potential of incorporating additional hydrophilic or hydrophobic components to modify these ionomers. Therefore, an all-atom model was constructed and for the ionomer and hydrophilic and hydrophobic modifications were implemented via incorporating SiO2 and PTFE, respectively. The investigation was conducted via molecular dynamics (MD) simulations to predict the morphology and structure of the ionomer and analyze the kinetic properties of oxygen molecules and protons. The simulation results elaborate that the hydrophilic and hydrophobic modifications favor the phase separation and the self-diffusion coefficients of oxygen molecules and protons are enhanced. Considering the hydration level of the ionomer films, hydrophilic modification facilitates mass transfer under low-hydration-level conditions, while hydrophobic modification is more effective in optimizing mass transfer as the hydration level increases. The optimal contents of SiO2 and PTFE for each hydration level in this work are 9.6% and 45%, respectively. This work proposes a reliable model and presents a detailed analysis of hydrophilic and hydrophobic modifications, which provides theoretical guidance for quantitative preparations of various composite membranes.

3.
Int J Nanomedicine ; 19: 2611-2623, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505166

RESUMO

Background: The photodynamic therapy (PDT) showed promising potential in treating tongue squamous cell carcinoma (TSCC). The Food and Drug Administration approved Verteporfin (Ver) is a powerful alternative in this field for its penetrating power and high production of reactive oxygen species (ROS). However, its applications in the treatment of TSCC are still rare. Methods: Ver was loaded onto Poly (lactic-co-glycolic acid) (PLGA) nanoparticles, followed by the modification with RGD peptide as the ligand. The nanostructured was named as RPV. In vitro assessments were conducted to evaluate the cytotoxicity of RPV through the Live/Dead assay analysis and Cell Counting Kit-8 (CCK-8) assay. Using the reactive oxygen species assay kit, the potential for inducing targeted tumor cell death upon laser irradiation by promoting ROS production was investigated. In vivo experiments involved with the biological distribution of RPV, the administration with RPV followed by laser irradiation, and the measurement of the tumor volumes. Immunohistochemical analysis was used to detect the Ki-67 expression, and apoptosis induced by RPV-treated group. Systemic toxicity was evaluated through hematoxylin-eosin staining and blood routine analysis. Real-time monitoring was employed to track RPV accumulation at tumor sites. Results: The in vitro assessments demonstrated the low cytotoxicity of RPV and indicated its potential for targeted killing TSCC cells under laser irradiation. In vivo experiments revealed significant tumor growth inhibition with RPV treatment and laser irradiation. Immunohistochemical analysis showed a notable decrease in Ki-67 expression, suggesting the effective suppression of cell proliferation, and TUNEL assay indicated the increased apoptosis in the RPV-treated group. Pathological examination and blood routine analysis revealed no significant systemic toxicity. Real-time monitoring exhibited selective accumulation of RPV at tumor sites. Conclusion: The findings collectively suggest that RPV holds promise as a safe and effective therapeutic strategy for TSCC, offering a combination of targeted drug delivery with photodynamic therapy.


Assuntos
Carcinoma de Células Escamosas , Nanopartículas , Fotoquimioterapia , Neoplasias da Língua , Humanos , Verteporfina/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Neoplasias da Língua/tratamento farmacológico , Neoplasias da Língua/metabolismo , Neoplasias da Língua/patologia , Espécies Reativas de Oxigênio/metabolismo , Antígeno Ki-67 , Linhagem Celular Tumoral , Língua/metabolismo , Língua/patologia , Fármacos Fotossensibilizantes
4.
Pain ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38537053

RESUMO

ABSTRACT: Repetitive transcranial magnetic stimulation (rTMS) is a promising technology to reduce chronic pain. Investigating the mechanisms of rTMS analgesia holds the potential to improve treatment efficacy. Using a double-blind and placebo-controlled design at both stimulation and pharmacologic ends, this study investigated the opioidergic mechanisms of rTMS analgesia by abolishing and recovering analgesia in 2 separate stages across brain regions and TMS doses. A group of 45 healthy participants were equally randomized to the primary motor cortex (M1), the dorsolateral prefrontal cortex (DLPFC), and the Sham group. In each session, participants received an intravenous infusion of naloxone or saline before the first rTMS session. Participants then received a second dose of rTMS session after the drugs were metabolized at 90 minutes. M1-rTMS-induced analgesia was abolished by naloxone compared with saline and was recovered by the second rTMS run when naloxone was metabolized. In the DLPFC, double but not the first TMS session induced significant pain reduction in the saline condition, resulting in less pain compared with the naloxone condition. In addition, TMS over the M1 or DLPFC selectively increased plasma concentrations of ß-endorphin or encephalin, respectively. Overall, we present causal evidence that opioidergic mechanisms are involved in both M1-induced and DLPFC-rTMS-induced analgesia; however, these are shaped by rTMS dosage and the release of different endogenous opioids.

5.
Adv Biol (Weinh) ; : e2400028, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38463014

RESUMO

Emerging evidence has implicated nicotinamide adenine dinucleotide (NAD+ ) metabolism in various inflammatory diseases. In the study, the role of NAD+ metabolism in Complete Freund's Adjuvant (CFA)-evoked inflammatory pain and the underlying mechanisms are investigated. The study demonstrated that CFA induced upregulation of nicotinamide phosphoribosyltransferase (NAMPT) in dorsal root ganglia (DRG) without significant changes in the spinal cord. Inhibition of NAMPT expression by intrathecal injection of NAMPT siRNA alleviated CFA-induced pain-like behavior, decreased NAD+ contents in DRG, and lowered poly-(ADP-ribose) polymerase 1 (PARP1) activity levels. These effects are all reversed by the supplement of nicotinamide mononucleotide (NMN). Inhibition of PARP1 expression by intrathecal injection of PARP1 siRNA alleviated CFA-induced pain-like behavior, while elevated NAD+ levels of DRG. The analgesic effect of inhibiting NAMPT/NAD+ /PARP1 axis can be attributed to the downregulation of the NF-κB/IL-1ß inflammatory pathway. Double immunofluorescence staining showed that the expression of NAMPT/NAD+ /PARP1 axis is restricted to DRG neurons. In conclusion, PARP1 activation in response to CFA stimulation, fueled by NAMPT-derived NAD+ , mediates CFA-induced inflammatory pain through NF-κB/IL-1ß inflammatory pathway.

6.
Anal Methods ; 16(14): 2063-2070, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38505942

RESUMO

Sunset Yellow (SY) is a widely used food coloring in the food industry. However, exceeding the allowable limit of this dye poses a significant threat to human health. To address this issue, we developed Lycium ruthenicum-derived nitrogen-doped carbon dots (N-CDs) with a stable blue fluorescence through hydrothermal treatment for SY determination. The quantum yield (QY) of these N-CDs was found to be up to 10.63%. Physical characterization of N-CDs was performed using various spectroscopic techniques to confirm their excellent photostability and non-toxic properties. Furthermore, the presence of SY had a substantial quenching effect on the fluorescence intensity (F0/F) of the N-CDs. Leveraging this observation, we developed a fluorescent sensor for the determination of SY in the concentration range of 0.05 to 35.0 µM, with a limit of detection (LOD, 3σ/K) of 17 nM. The excellent fluorescent sensor also showed satisfactory results in the practical drink samples. Moreover, the stability and cytotoxicity of N-CDs as a fluorescent probe were studied. Finally, the N-CDs were applied to cell imaging using A549 cells.


Assuntos
Compostos Azo , Pontos Quânticos , Humanos , Fluorescência , Pontos Quânticos/toxicidade , Pontos Quânticos/química , Carbono/química , Nitrogênio/química , Biomassa
7.
Ann Hepatol ; 29(4): 101475, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38331384

RESUMO

INTRODUCTION AND OBJECTIVES: Acute liver injury (ALI) is characterized by massive hepatocyte death with high mortality and poor prognosis. Hepatocyte pyroptosis plays a key role in the physiopathological processes of ALI, which can damage mitochondria and release NLRP3 inflammasome particles, causing systemic inflammatory responses. Z-DNA Binding Protein 1 (ZBP1) is a sensor that induces cell death. Here, we investigated whether ZBP1 participates in hepatocyte pyroptosis and explored the possible pathogenesis of ALI. MATERIALS AND METHODS: Hepatocyte pyrotosis was induced with lipopolysaccharide (LPS) and nigericin (Nig), and the expression of Zbp1 (ZBP1) was examined by western blot analysis and RT-qPCR. Further, we transfected AML-12 (LO2 and HepG2) cell lines with Zbp1 (ZBP1) siRNA. After ZBP1 was silenced, LDH release and flow cytometry were used to measure the cell death; Western blot analysis and RT-qPCR were used to detect the marker of NLRP3 inflammasome activation and pyroptosis. We also detected the expression of mitochondrial linear rupture marker phosphoglycerate mutase family member 5 (PGAM5) using western blot analysis and reactive oxygen species (ROS) using the DCFH-DA method. RESULTS: The expression of ZBP1 was up-regulated in LPS/Nig-induced hepatocytes. Si-Zbp1 (Si-ZBP1) inhibited NLRP3 inflammasome activation and pyroptosis in LPS/Nig-induced hepatocytes. Moreover, ZBP1 silencing inhibited the expression of PGAM5 by reducing ROS production. CONCLUSIONS: ZBP1 promotes hepatocellular pyroptosis by modulating mitochondrial damage, which facilitates the extracellular release of ROS.

8.
Fish Shellfish Immunol ; 146: 109398, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244822

RESUMO

Hexagrammos otakii is favored by consumers and aquaculture practitioners because of its strong adaptability and fast growth. However, recently, frequent outbreaks of diseases in the breeding of H. otakii have led to significant economic losses, especially due to bacterial diseases, which limit the healthy breeding of H. otakii. As a luminescent Gram-negative bacterium, Vibrio harveyi is the main pathogenic bacteria of H. otakii. In this study, the histopathology and label-free quantitative proteomics analysis were performed to reveal the changes of skin mucus proteins in H. otakii after infection with V. harveyi. The histopathological changes in the skin of H. otakii showed that when the bacteria were injected into the epithelial cells, it caused an increase in the number of mucous cells and a certain degree of damage and deformation in skin. Moreover, the quantitative proteomics analysis revealed a total of 364 differentially expressed proteins (DEPs), and these DEPs were found to be involved in environmental information processing, metabolism, infectious diseases: bacteria, replication and repair. More importantly, the enrichment analysis of the DEPs revealed that these different proteins were mainly targeted immune-related pathways. After infection of bacteria, the host's immune ability will be weakened, causing V. harveyi to enter the organism more easily, resulting in increased mucus in H. otakii, which will eventually lead to a decline in its physical function. These results provided an insight into a series of physiological changes after the bacterial infection of fish at the proteomic level and basic data for further exploration of the potential mechanism of skin mucus. Taken together, the results indicated more opportunities for the future designs and discoveries of effective antibacterial vaccines and antibacterial drugs for H. otakii.


Assuntos
Doenças dos Peixes , Perciformes , Vibrioses , Vibrio , Animais , Proteômica , Vibrio/fisiologia , Proteínas , Muco , Antibacterianos/farmacologia
9.
Environ Pollut ; 342: 123075, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38052339

RESUMO

Upgrading municipal wastewater treatment plants (MWTPs) has been implemented in many megacities of China to reduce the discharges of nutrients and other pollutants and improve water quality of highly urbanized rivers. However, the contribution of MWTP discharge to bacterial hazards in the receiving rivers after upgrades has been largely unknown. In this study, high-throughput sequencing and shotgun metagenomics were applied to investigate the changes in the abundance, composition, potential risks, and contributions of bacteria and antibiotic resistance genes (ARGs) from effluent to receiving river after upgrading the third-largest MWTP in China with denitrification biofilters, ultrafiltration, ozonation, and disinfection processes. The annual loadings of total nitrogen and 27 types of pharmaceuticals were reduced by 42.4% ± 13.2% and 46.2% ± 15.4%, respectively. Bacterial biomass decreased from (3.58 ± 0.49) to (1.23 ± 0.27) × 107 16S rRNA gene copies/mL, and identified biomarkers in effluent and downstream shifted due to the adopted processes. Opportunistic pathogen bacteria downstream were also reduced. Although the relative abundance of total ARGs in MWTP effluent increased from 1.10 ± 0.02 to 2.19 ± 0.03 copies/16S rRNA gene after upgrades, that of total and high-risk ARGs downstream showed no significant difference. More importantly, the Bayesian-based SourceTracker method provided valuable insight by revealing that the contributions of MWTP discharge to downstream bacteria (from 44.2% ± 1.5%-31.4% ± 0.9%) and ARGs (from 61.2% ± 5.3%-47.6% ± 4.1%) were significantly reduced following the upgrades, indicating upgrading MWTP showed integrated benefits to the bacterial hazards in the receiving river. This study provides useful information for better control of bacterial hazard risks and operational strategy for the improvement of the urban aquatic ecosystem.


Assuntos
Genes Bacterianos , Purificação da Água , Ecossistema , RNA Ribossômico 16S/genética , Teorema de Bayes , Bactérias/genética , Antibacterianos
10.
J Integr Complement Med ; 30(1): 37-46, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37646752

RESUMO

Background: As a mind-body therapy, music may have a positive effect on patients with postoperative pain and anxiety. Objective: The aim of this systematic review and meta-analysis was to explore the effects of perioperative music therapy on postoperative pain and anxiety based on existing clinical trials. Methods: The Cochrane Library, PubMed, and Embase were searched from their inception to August 2022, selected the literature according to the inclusion and exclusion criteria, and completed the meta-analysis using RevMan 5.3. Results: A total of 19 eligible randomized controlled trials were enrolled, including 1803 patients. The results of the meta-analysis showed that the scores of pain (standardized mean difference [SMD], -0.90; 95% confidence interval [CI], -1.26 to -0.53; p < 0.00001) and anxiety (SMD, -0.75; 95% CI, -1.19 to -0.31; p = 0.0008) decreased in the music group on postoperative day 1. The blood pressure (mean difference [MD], -5.29; 95% CI, -9.53 to -1.06; p = 0.01) and heart rate (MD, -6.13; 95% CI, -11.69 to -0.58; p = 0.03) also decreased on the same day. Further, the score of change in pain (SMD, 0.35; 95% CI, 0.01 to 0.68; p = 0.04) and anxiety (SMD, 1.35; 95% CI, 0.01 to 2.69; p = 0.05) increased between preoperative and postoperative days in the music group. However, the scores of hospital satisfaction (MD, -0.07; 95% CI, -1.40 to 1.27; p = 0.92) and incidences of postoperative nausea and vomiting (risk ratio, 0.41; 95% CI, 0.13 to 1.34; p = 0.14) did not decrease in the music group. Conclusion: Perioperative music therapy can significantly reduce postoperative pain and anxiety and avoid fluctuations in blood pressure and heart rate but does not improve patient hospital satisfaction or incidences of postoperative nausea and vomiting.


Assuntos
Musicoterapia , Música , Humanos , Musicoterapia/métodos , Náusea e Vômito Pós-Operatórios , Ansiedade/prevenção & controle , Dor Pós-Operatória/prevenção & controle
12.
Artigo em Inglês | MEDLINE | ID: mdl-37995169

RESUMO

Symbolic regression (SR) is the process of finding an unknown mathematical expression given the input and output and has important applications in interpretable machine learning and knowledge discovery. The major difficulty of SR is that finding the expression structure is an NP-hard problem, which makes the entire process time-consuming. In this study, the solution of expression structures was regarded as a classification problem and solved by supervised learning such that SR can be solved quickly by using the solving experience. Techniques for classification tasks, such as equivalent label merging and sample balance, were used to enhance the robustness of the algorithm. We proposed a symbolic network called DeepSymNet to represent symbolic expressions to improve the performance of the algorithm. DeepSymNet has been proven to have a strong representation ability with a shorter label compared to the current popular representation methods, reducing the search space when predicting. Moreover, DeepSymNet conveniently decomposes SR into two smaller subproblems, which makes solving the problem easier. The proposed algorithm was tested on artificially generated expressions and public datasets and compared with other algorithms. The results demonstrate the effectiveness of the proposed algorithm.

13.
J Cell Biochem ; 124(12): 1931-1947, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37992207

RESUMO

The correct assembly of the spindle apparatus directly regulates the precise separation of chromosomes in mouse oocytes, which is crucial for obtaining high-quality oocytes capable of successful fertilization. The localization, assembly, migration, and disassembly of the spindle are regulated by a series of spindle-associated proteins, which exhibit unique expression level variations and specific localization in oocytes. Proteomic analysis revealed that among many representative spindle-associated proteins, the expression level of nucleolar and spindle-associated protein 1 (NUSAP1) significantly increased after meiotic resumption, with a magnitude of change higher than that of other proteins. However, the role of NUSAP1 during oocyte meiosis maturation has not been reported. Here, we report that NUSAP1 is distributed within the cell nucleus during the germinal vesicle (GV) oocytes with non-surrounded nucleolus stage and is not enriched in the nucleus during the GV-surrounded nucleolus stage. Interestingly, NUSAP1 forms distinct granular aggregates near the spindle poles during the prophase of the first meiotic division (Pro-MI), metaphase I, and anaphase I/telophase I stages. Nusap1 depletion leads to chromosome misalignment, increased aneuploidy, and abnormal spindle assembly, particularly a decrease in spindle pole width. Correspondingly, RNA-seq analysis revealed significant suppression of the "establishment of spindle orientation" signaling pathway. Additionally, the attenuation of F-actin in NUSAP1-deficient oocytes may affect the asymmetric division process. Gene ontology analysis of NUSAP1 interactomes, identified through mass spectrometry here, revealed significant enrichment for RNA binding. As an RNA-binding protein, NUSAP1 is likely involved in the regulation of messenger RNA homeostasis by influencing the dynamics of processing (P)-body components. Overall, our results demonstrate the critical importance of precise regulation of NUSAP1 expression levels and protein localization for maintaining mouse oocyte meiosis.


Assuntos
Oogênese , Proteômica , Animais , Camundongos , Meiose , Metáfase , Proteínas Associadas aos Microtúbulos/metabolismo , Oócitos/metabolismo , Fuso Acromático/metabolismo
14.
Int J Nanomedicine ; 18: 6185-6198, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37933297

RESUMO

Background: Photodynamic therapy (PDT) has emerged as a promising strategy for oral cancer treatment. Verteporfin is a powerful photosensitizer and widely used in the treatment of macular degeneration. However, rare work has reported its potential in the treatment of oral cancer. Methods: In this study, we introduce an innovative approach of nano-photosensitizer based on Verteporfin, which was prepared by utilizing macrophage membrane to coat Verteporfin-loaded zeolitic imidazolate framework 8 (ZIF-8) for effective photodynamic therapy against oral cancer. Nanoparticle characteristics were assessed including size, zeta potential, and PDI. Cellular uptake studies were conducted using CAL-27 cells. Furthermore, inhibitory effects in both in vitro and in vivo settings were observed, ensuring biosafety. Assessment of anticancer efficacy involved tumor volume measurement, histological analyses, and immunohistochemical staining. Results: In vitro experiments indicated that the nano-photosensitizer showed efficient cellular uptake in the oral cancer cells. Upon the laser irradiation, the nano-photosensitizer induced the generation of reactive oxygen species (ROS), leading to cancer cell apoptosis. The in vivo experiments indicated that the coating with cell membranes enhanced the circulation time of nano-photosensitizer. Moreover, the specificity of the nano-photosensitizer to the cancer cells was also improved by the cell membrane-camouflaged structure in the tumor-bearing mouse model, which inhibited the tumor growth significantly by the photodynamic effect in the presence of laser irradiation. Conclusion: Overall, our findings demonstrate the potential of macrophage membrane-coated ZIF-8-based nanoparticles loaded with Verteporfin for effective photodynamic therapy in oral cancer treatment. This nano-system holds promise for synergistic cancer therapy by combining the cytotoxic effects of PDT with the activation of the immune system, providing a novel therapeutic strategy for combating cancer.


Assuntos
Neoplasias Bucais , Nanopartículas , Fotoquimioterapia , Camundongos , Animais , Fármacos Fotossensibilizantes/farmacologia , Verteporfina/uso terapêutico , Fototerapia , Neoplasias Bucais/tratamento farmacológico , Nanopartículas/química , Modelos Animais de Doenças , Linhagem Celular Tumoral
15.
Ren Fail ; 45(2): 2261552, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37782276

RESUMO

BACKGROUND: Circular RNAs (circRNAs) are promising biomarkers and therapeutic targets for acute kidney injury (AKI). In this study, we investigated the mechanism by which circRNA itchy E3 ubiquitin protein ligase (circ-ITCH) regulates sepsis-induced AKI. METHODS: A sepsis-induced AKI mouse model was created using LPS induction and circ-ITCH overexpression. Circ-ITCH levels were confirmed via RT-qPCR. Kidney tissue changes were examined through various stains and TUNEL. Enzyme-linked immunosorbent assay (ELISA) gauged oxidative stress and inflammation. Mitochondrial features were studied with electron microscopy. RT-qPCR and western blotting assessed mitochondrial function parameters. Using starBase, binding sites between circ-ITCH and miR-214-3p, as well as miR-214-3p and ABCA1, were predicted. Regulatory connections were proven by dual-luciferase assay, RT-qPCR, and western blotting. RESULTS: Circ-ITCH expression was downregulated in LPS-induced sepsis mice. Overexpression of circ-ITCH ameliorates indicators of renal function (serum creatinine [SCr], blood urea nitrogen [BUN], neutrophil gelatinase-associated lipocalin [NGAL], and kidney injury molecule-1 [Kim-1]), reduces renal cell apoptosis, mitigates oxidative stress markers (reactive oxygen species [ROS] and malondialdehyde [MDA]), and diminishes inflammatory markers (interleukin [IL]-1ß, IL-6, and tumor necrosis factor [TNF-α]). Moreover, circ-ITCH overexpression alleviated mitochondrial damage and dysfunction. Furthermore, circ-ITCH acts as a sponge for miR-214-3p, thereby upregulating ABCA1 expression. In addition, the miR-214-3p inhibitor repressed oxidative stress, inflammation, and mitochondrial dysfunction, which was reversed by circ-ITCH knockdown. Further cellular analysis in HK-2 cells supported these findings, highlighting the protective role of circ-ITCH against sepsis-induced AKI, particularly through the miR-214-3p/ABCA1 axis. CONCLUSION: The novel circ-ITCH/miR-214-3p/ABCA1 pathway plays an essential role in the regulation of oxidative stress and mitochondrial dysfunction in sepsis-induced AKI.


Assuntos
Injúria Renal Aguda , MicroRNAs , Sepse , Animais , Camundongos , RNA Circular/genética , Lipopolissacarídeos , Injúria Renal Aguda/genética , Sepse/complicações , Apoptose , Trifosfato de Adenosina
16.
Am J Emerg Med ; 73: 27-33, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37579529

RESUMO

INTRODUCTION: The clinical significance of hemoglobin level and blood transfusion therapy in elderly sepsis patients remains controversial. The study investigated the relationship between mortality, hemoglobin levels, and blood transfusion in elderly sepsis patients. METHODS: Elderly sepsis patients were included in the Marketplace for Medical Information in Intensive Care (MIMIC-IV) database. A multivariate regression model analyzed the relationship between the Hb level and the 28-day mortality risk. Logistic Multivariate analysis, Propensity Matching (PSM) analysis, an Inverse Probabilities Weighting (IPW) model and doubly robust estimation were applied to analyze the 28-day mortality risk between transfused and non-transfused patients in Hb at 7-8 g/dL, 8-9 g/dL, 9-10 g/dL, and 10-11 g/dL groups. RESULTS: 7473 elderly sepsis patients were enrolled in the study. The Hb level in the ICU and the 28-day mortality risk of patients with sepsis shared a non-linear relationship. The patients with Hb levels of <10 g/dL(p < 0.05) and > 15 g/dL(p < 0.05) within 24 h had a high mortality risk in multivariate analysis. In the Hb level 7-8 g/dL and 8-9 g/dL subgroup, the Multivariate analysis (p < 0.05), PSM (p < 0.05), IPW (p < 0.05) and doubly robust estimation (p < 0.05) suggested that blood transfusion could reduce the mortality risk. In the subgroup with a Hb level of 10-11 g/dL, IPW (p < 0.05) and doubly robust estimation (p < 0.05) suggested that blood transfusion could increase the mortality risk of elderly sepsis patients. CONCLUSION: A non-linear relationship between the Hb level and the 28-day mortality risk and Hb levels of <10 g/dL and > 15 g/dL may increase the mortality risk, and blood transfusion with a Hb level of <9 g/dL may minimize mortality risk in elderly sepsis patients.


Assuntos
Relevância Clínica , Sepse , Humanos , Idoso , Estudos Retrospectivos , Hemoglobinas/análise , Transfusão de Sangue , Sepse/terapia
17.
J Biol Chem ; 299(9): 105126, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37543362

RESUMO

Oxidative stress triggered by aging, radiation, or inflammation impairs ovarian function by inducing granulosa cell (GC) apoptosis. However, the mechanism inducing GC apoptosis has not been characterized. Here, we found that ovarian GCs from aging patients showed increased oxidative stress, enhanced reactive oxygen species activity, and significantly decreased expression of the known antiapoptotic factor sphingosine-1-phosphate/sphingosine kinase 1 (SPHK1) in GCs. Interestingly, the expression of Krüppel-like factor 12 (KLF12) was significantly increased in the ovarian GCs of aging patients. Furthermore, we determined that KLF12 was significantly upregulated in hydrogen peroxide-treated GCs and a 3-nitropropionic acid-induced in vivo model of ovarian oxidative stress. This phenotype was further confirmed to result from inhibition of SPHK1 by KLF12. Interestingly, when endogenous KLF12 was knocked down, it rescued oxidative stress-induced apoptosis. Meanwhile, supplementation with SPHK1 partially reversed oxidative stress-induced apoptosis. However, this function was lost in SPHK1 with deletion of the binding region to the KLF12 promoter. SPHK1 reversed apoptosis caused by hydrogen peroxide-KLF12 overexpression, a result further confirmed in an in vitro ovarian culture model and an in vivo 3-nitropropionic acid-induced ovarian oxidative stress model. Overall, our study reveals that KLF12 is involved in regulating apoptosis induced by oxidative stress in aging ovarian GCs and that sphingosine-1-phosphate/SPHK1 can rescue GC apoptosis by interacting with KLF12 in negative feedback.


Assuntos
Envelhecimento , Apoptose , Células da Granulosa , Peróxido de Hidrogênio , Fatores de Transcrição Kruppel-Like , Lisofosfolipídeos , Fosfotransferases (Aceptor do Grupo Álcool) , Esfingosina , Feminino , Humanos , Envelhecimento/metabolismo , Retroalimentação Fisiológica , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Peróxido de Hidrogênio/farmacologia , Técnicas In Vitro , Fatores de Transcrição Kruppel-Like/antagonistas & inibidores , Fatores de Transcrição Kruppel-Like/biossíntese , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Lisofosfolipídeos/biossíntese , Lisofosfolipídeos/metabolismo , Técnicas de Cultura de Órgãos , Estresse Oxidativo/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Regiões Promotoras Genéticas , Esfingosina/biossíntese , Esfingosina/metabolismo , Espécies Reativas de Oxigênio/metabolismo
19.
J Nanobiotechnology ; 21(1): 218, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37434199

RESUMO

Apoptosis, a form of programmed cell death, is essential for growth and tissue homeostasis. Apoptotic bodies (ApoBDs) are a form of extracellular vesicles (EVs) released by dying cells in the last stage of apoptosis and were previously regarded as debris of dead cells. Recent studies unraveled that ApoBDs are not cell debris but the bioactive treasure left behind by the dying cells with an important role in intercellular communications related to human health and various diseases. Defective clearance of ApoBDs and infected-cells-derived ApoBDs are possible etiology of some diseases. Therefore, it is necessary to explore the function and mechanism of the action of ApoBDs in different physiological and pathological conditions. Recent advances in ApoBDs have elucidated the immunomodulatory, virus removal, vascular protection, tissue regenerative, and disease diagnostic potential of ApoBDs. Moreover, ApoBDs can be used as drug carriers enhancing drug stability, cellular uptake, and targeted therapy efficacy. These reports from the literature indicate that ApoBDs hold promising potential for diagnosis, prognosis, and treatment of various diseases, including cancer, systemic inflammatory diseases, cardiovascular diseases, and tissue regeneration. This review summarizes the recent advances in ApoBDs-related research and discusses the role of ApoBDs in health and diseases as well as the challenges and prospects of ApoBDs-based diagnostic and therapeutic applications.


Assuntos
Doenças Cardiovasculares , Vesículas Extracelulares , Humanos , Apoptose , Transporte Biológico , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/tratamento farmacológico , Comunicação Celular
20.
MedComm (2020) ; 4(4): e273, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37521428

RESUMO

Gene therapy has emerged as a potential approach for lung cancer therapy. However, the application of gene therapy is still limited by their properties, such as low specificity to the cancer cells, negatively charged groups, short systemic circulation time, and rapid degradation by nucleases. The progression of lung adenocarcinoma (LUAD) can be promoted through the methylation process of miR-148a-3p promoter, as confirmed by our previous research. In the current study, we are the first to design a mirrored Arg-Gly-Asp (RGD)-modified cationic peptide (RD24) as a microRNA (miRNA) vehicle, which enabled to pack the miRNA (miR-148a-3p) efficiently and generate RD24/miR-148a-3p nanoparticles (RPRIN) by self-assembling. RPRIN exhibited a high transfection efficiency in lung cancer cells via the conjugation between RGD and integrins on the surface of lung cancer cells. Furthermore, RD24 showed matrix metallopeptidase 2 (MMP2) responsiveness, which improved lung cancer cell inhibition induced by the miRNA intracellularly. In addition, RPRIN exhibits several advantages, such as prolonged circulation duration, reduced toxicity, and immune escape. Experiments conducted both in vitro and in vivo revealed that RPRIN effectively suppressed the growth and progression of lung cancer. Thus, the mirrored RGD-modified cationic peptide showed great potential in transducing miRNA for lung cancer therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...